

Communication

Intramolecular Arylcyanation of Alkenes Catalyzed by Nickel/AlMeCI

Yoshiaki Nakao, Shiro Ebata, Akira Yada, Tamejiro Hiyama, Masashi Ikawa, and Sensuke Ogoshi J. Am. Chem. Soc., 2008, 130 (39), 12874-12875 • DOI: 10.1021/ja805088r • Publication Date (Web): 06 September 2008 Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 09/06/2008

Intramolecular Arylcyanation of Alkenes Catalyzed by Nickel/AlMe₂Cl

Yoshiaki Nakao,*^{,†} Shiro Ebata,[†] Akira Yada,[†] Tamejiro Hiyama,^{*,†} Masashi Ikawa,[‡] and Sensuke Ogoshi^{*,‡}

Department of Material Chemistry, Kyoto University, Kyoto, Japan, and Department of Applied Chemistry, Osaka University, Osaka, Japan

Received July 2, 2008

E-mail: yoshiakinakao@npc05.mbox.media.kyoto-u.ac.jp; thiyama@z06.mbox.media.kyoto-u.ac.jp; ogoshi@chem.eng.osaka-u.ac.jp

We report herein the intramolecular arylcyanation reaction of alkenes catalyzed cooperatively by nickel and AlMe₂Cl. The reaction allows us to simultaneously construct both benzylic quaternary carbons and C–CN bonds in a single operation with high atom economy. The scope and mechanism are investigated as well as preliminary results on the enantioselective version of the reaction to provide novel access to asymmetric quaternary stereocenters.¹

We recently disclosed that the arylcyanation reaction of alkynes² is significantly accelerated by Lewis acid catalysts.^{3,4} The synergistic catalysis has been found to be very powerful for the activation of C-CN bonds of a range of nitriles, allowing the participation of even acetonitrile in the carbocyanation reaction. We then became interested in application of the binary catalysis to alkenes as substrates, because the transformation would afford nitriles with up to two newly formed sp³-carbon stereocenters.⁵ First, we synthesized $1a^6$ to examine the feasibility of the intramolecular arylcyanation reaction across double bonds (entry 1, Table 1).⁷ Treatment of 1a with Ni(cod)₂ (5 mol %), PMe₃ (10 mol %), and AlMe₂Cl (20 mol %) in toluene at 100 °C for 7 h gave 2a in 93% yield, which was derived from the insertion of the olefinic moiety into the Ar-CN bond in a 5-exo-trig fashion. Only a trace amount of the adduct was observed in the absence of AlMe₂Cl. Silvl and amino tethers as well as methoxy and chloro groups on the aromatic ring were all tolerated under these conditions to afford corresponding nitriles 2b-2g in good yields (entries 2-8). Disubstituted double bonds conjugated with a carbonyl and those having a phenyl or silyl substituent also participated in the addition reaction (entries 9-12). A high degree of stereospecificity was observed with 1k and 11, giving the respective diastereomers 2k and 2l (entries 13–15).⁸ Thus, the alkene-arylcyanation proceeds through syn stereochemistry. Larger ring systems including six- and sevenmembered compounds were successfully constructed (entries 16-20), whereas no four-membered ring formation was observed from 2-allylbenzonitrile. Reactions of benzonitriles bearing a monosubstituted double bond such as 2-(but-3-en-1-yl)benzonitrile resulted in olefin isomerization and the formation of 1-methylindene derived probably from carbonickelation followed by β -hydride elimination and isomerization (vide infra).

By studying the stoichiometric reaction of substrate **1a** with a nickel(0) species, probable reaction intermediates were observed and characterized by NMR spectroscopy and/or X-ray crystal structure determination (Scheme 1). The reaction of Ni(cod)₂, P(*n*-Bu)₃, AlMe₂Cl, and **1a** gave the AlMe₂Cl adduct of η^2 -nitrile complex **3** immediately.^{9–11} AlMe₂Cl seems to promote the coordination of the cyano group to nickel(0), because no η^2 -nitrile complex was observed in its absence. The oxidative addition of the Ar–CN bond of **3**

 $\textit{Table 1.}\xspace$ Nickel/AlMe₂Cl-Catalyzed Intramolecular Arylcyanation of Alkenes^a

^{*a*} The reactions were carried out using a substrate (1.0 mmol), Ni(cod)₂ (5 mol %), a ligand (10 mol %), and AlMe₂Cl (20 mol %) in toluene at 100 °C. ^{*b*} Isolated yields. ^{*c*} Yields estimated by GC with a 0.036–0.100 mmol scale. ^{*d*} Reaction run on a 3.0 mmol scale. ^{*e*} dr = 98:2 (>99:1 after isolation). ^{*f*} dr = 97:3 (>99:1 after isolation). ^{*g*} Me₂P(CH₂)₂PMe₂ (5 mol %).

proceeded at room temp within 6 h to give $4^{4,12}$ The molecular structures of **3** and **4** were unambiguously identified by X-ray crystallography (Figure 1). Upon heating at 60 °C for 46 h, **4** was further converted to 6^{13} presumably via **5**, the insertion step through a tetra- or penta-coordinate intermediate or the preceding ligand exchange step appearing to be rate-determining. Treatment of **6** with a stoichiometric amount of **1a** resulted in regeneration of **3**, suggesting

[†] Kyoto University.

Scheme 1. Plausible Mechanism of the Reaction

Scheme 2. Enantioselective Intramolecular Arylcyanation and Its Application to Natural Product Syntheses^a

^a Reagents and Conditions: (a) Ni(cod)₂ (10 mol %), (R,R)-i-Pr-Foxap (20 mol %), AlMe₂Cl (40 mol %), DME, 100 °C, 10 h; (b) PhIO (6.0 equiv), CH₂Cl₂, room temp, 2.5 h; (c) LiAlH₄ (4.0 equiv), THF, room temp, 1 h, then reflux, 0.5 h; (d) HCHO aq (5.0 equiv), NaBH(OAc)₃ (5.0 equiv), MeOH, 0 °C to room temp, 1.5 h; (e) neat, Ni(cod)₂ (5 mol %), (R,R)-ChiraPhos (6 mol %), AlMe₂Cl (20 mol %), 120 °C, 1 h; (f) DIBAL-H (2.0 equiv), toluene, -78 °C, 2 h, then 1 M HCl (aq), THF, 0 °C to room temp, 2 h.

that the formation of the η^2 -nitrile complex is more favorable for conjugated nitriles than alkyl cyanides because of the lower energy levels of the π^* orbitals of the conjugated cyano groups to better stabilize back-bonding interactions with nickel(0).¹⁴

With a broad substrate scope and mechanistic insights, we focused on the asymmetric version of the reaction.¹⁵ After a brief survey of chiral ligands for the reaction of 1d, phosphino-oxazoline ligand (R,R)-*i*-Pr-Foxap¹⁶ was found effective to give (S)-**2d** in 96% ee and 88% yield (Scheme 2). Oxidation of the C-2 position of the indoline framework gave (S)-7,¹⁷ which was converted to (-)-esermethole through (S,R)-8,^{7,18} a synthetic precursor of potent acetylcholinesterase inhibitors such as (-)-physostigmine¹⁹ and (-)phenserine.²⁰ Yet, the enantioselective formation of a six-membered ring was achieved with 1p using (R,R)-ChiraPhos as a ligand to give (R)-2p in 92% ee and 98% yield. The cyano group of (R)-2p was reduced to give aldehyde (R)-9, which is a synthetic precursor of (-)-eptazocine, an analgesic substance available commercially.²¹

Figure 1. Molecular structures of 3 and 4. Butyl groups are omitted.

In summary, the intramolecular arylcyanation of alkenes is demonstrated to be a versatile protocol to synthesize a range of synthetically interesting nitriles having a benzylic quaternary carbon. Characterization of important intermediates in the catalytic cycle and synthetic applications including enantioselective versions of the reaction has also been achieved. Efforts are currently directed toward development of similar transformations of nitriles of other types as well as the intermolecular arylcyanation of olefins.

Acknowledgment. The authors are grateful to Professor Masaki Shimizu for X-ray crystallographic analysis of 2k. This work has been supported financially by a Grant-in-Aid for Creative Scientific Research, Priority Areas "Chemistry of Concerto Catalysis" and "Molecular Theory for Real Systems", and Encouragement for Young Scientists (B) from MEXT, The Sumitomo Foundation, and The Uehara Memorial Foundation. A.Y. acknowledges the JSPS for a predoctoral fellowship.

Supporting Information Available: Detailed experimental procedures including spectroscopic and analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363
- Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567. (2)Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, (3)2428
- (4) For examples of catalytic and stoichiometric activation of C-CN bonds by nickel-Lewis acid, see: (a) Tolman, C. A.; Seidel, W. C.; Druliner, J. D.; Domaille, P. J. *Organometallics* **1984**, *3*, 33. (b) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. **2004**, *126*, 3627.
- (5) For the carbocyanation reaction of norbornene, see: (a) Nishihara, Y.; Inoue, Y.; Izawa, S.; Miyasaka, M.; Tanemura, K.; Nakajima, K.; Takagi, K. Tetrahedron 2006, 62, 9872. (b) Nakao, Y.; Yada, A.; Satoh, J.; Ebata, S.; Oda, S.; Hiyama, T. Chem. Lett. 2006, 35, 790.
- (6) See Supporting Information for details.
- (7) For the intramolecular cyanoamidation of alkenes, see: (a) Kobayashi, Y.; Kamisaki, H.; Takeda, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. Tetrahe-dron 2007, 63, 2978. (b) Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303.
- (8) The relative stereochemistry of 2k was determined by X-ray crystallography.
- (8) The relative stereochemistry of 2k was determined by A-ray crystandgraphy.
 (9) Selected spectral data for **3**. ¹H NMR (400 MHz, C₆D₆): δ 0.26 (s, 6H, -Al(CH₃)₂Cl), 4.84 (s, 1H, -CH₂CH₂C(CH₃)=CH₂), 4.93 (s, 1H, -CH₂CH₂C(CH₃)=CH₂). ¹³C NMR (100 MHz, C₆D₆): δ 5.8 (s, -Al(CH₃)₂Cl), 110.4 (s, -CH₂CH₂C(CH₃)=CH₂), 145.5 (s, -CH₂CH₂C (CH₃)=CH₂), 183.9 (dd, J_{CP} = 10.6, 35.7 Hz, -CN), ³¹P NMR (109 MHz, C_6D_6): δ 7.4 (d, $J_{PP} = 24.0$ Hz), 18.1 (d, $J_{PP} = 24.0$ Hz).
- (10) A triethylborane adduct of a η^2 -acetonitrile nickel complex has been reported by Jones, see: Atesin, T. A.; Li, T.; Lachaize, S.; Brennessel, W. W.; Ĝarcia, J. J.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 7562.
- (11) The catalytic reaction of 1a employing PBu₃ as a ligand also gave 2a in a
- good yield. (12) Selected spectral data for 4. ¹H NMR (400 MHz, C₆D₆): δ -0.06 (s, 6H, -(12) Selected spectral data for 4. ¹H NMR (400 MHz, C₆D₆): δ -0.06 (s, 6H, -(12) -CH₂CH₂(CH₂)=CH₂(CH₂), 4.96 (s, 1H, -Selected spectral data for 4. ¹H NMR (400 MHZ, C₆D₆): δ -0.06 (s, 6H, – Al(CH₃)₂Cl), 4.91 (s, 1H, –CH₂CH₂C(CH₃)=CH₂), 4.96 (s, 1H, – CH₂CH₂C(CH₃)=CH₂). ¹³C NMR (100 MHZ, C₆D₆): δ -6.8 (brs, – Al(CH₃)₂Cl), 110.3 (s, –CH₂CH₂C(CH₃)=CH₂), 145.7 (s, –CH₂CH₂C (CH₃)=CH₂), 154.8 (t, J_{CP} = 23.1 Hz, –CN). ³¹P NMR (109 MHZ, C₆D₆): δ 13.5 (s).
- (13) Selected spectral data for **6**. ¹H NMR (270 MHz, C₆D₆): δ 0.03 (s, 3H,-Al(CH₃)₂Cl), 0.04 (s, 3H,-Al(CH₃)₂Cl). ³¹P NMR (109 MHz, C₆D₆): δ 5.4 (d, J_{PP} = 27.3 Hz), 18.7 (d, J_{PP} = 27.3 Hz).
- (14) For the importance of back-bonding interactions in η^2 -aldehyde- and η^2 ketone-nickel(0) complexes, see: Delbecq, F.; Sautet, P. J. Am. Chem. Soc. 1992, 114, 2446.
- (15) A full scope of the enantioselective arylcyanation will be reported in a forthcoming full paper. (16) Miyake, Y.; Nishibayashi, Y.; Uemura, S. *Synlett* **2008**, 1747.
- (17) Moriarty, R. M.; Vaid, R. K.; Duncan, M. P.; Ochiai, M.; Inenaga, M.; Nagao, Y. Tetrahedron Lett. 1988, 29, 6913.
- (18) Yu, Q.-S.; Luo, W.; Holloway, H. W.; Utsuki, T.; Perry, T.; Lahiri, D. K.; Greig, N. H.; Brossi, A. Heterocycles 2003, 61, 529
- Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, (19)6500.
- (20) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043
- Takemoto, T.; Sodeoka, M.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. (21)1993, 115, 8477; (correction) J. Am. Chem. Soc. 1994, 116, 11207.

JA805088R